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e Three classification models

— Discriminant Model: learn the decision boundary directly
and apply it to determine the class of each data point

— Discriminative Model: learn P(Y | X) directly

— Generative Model: Learn P(Y|X) through P(X|Y) and P(Y).
The joint probability P(X,Y) and marginal probability P(X)
can also be learned.

e SML vs. non-statistical ML
— Objective function for SML: MLE or MAP,

— Objective function for ML: MSE, maximizing the margin, or
others.

 Unsupervised Learning
— Clustering (group data together)
— EM (learning given incomplete data, based-on MLE)



Revisit Bayesian: Prior vs.
Smoothing Technique



Estimating the Likelihood

Assuming we randomly observe N coin tosses to find head occurs H
times, what is the frequency of head for this coin?

— Assuming the probability is p, then according to MILE we want to
optimize log(p"(1-p)N-H)

— After performing derivatives on p, we can learn that the MLE solution
of pis H/N

However, the H/N model suffers a major drawback that unseen
events will receive zero probability

— If we toss a coin 6 times and find zero heads, H/N model tells us the
probability of head is O

— However, unseen objects should receive a tiny probability (rather than
zero), given the fact that we know they do exist.

Smoothing: a technique to assign non-zero probability to unseen
objects

— Add-one smoothing: assuming everything occurs at least once.

— Under this assumption, the frequency of W becomes (H+1)/(N+2),
because both head and tail occurs once.

— This is a commonly applied techniques for n-gram Langauge Model
Learning



Add-one Smoothing vs. Bayesian Prior

Last week after class, | received an email from a student in
this class, Shao-Chuan Wang, saying that right after the
class, he proved that add-one smoothing can be
interpreted as an MAP solution for coin toss.

Recall that the MLE solution aims at optimizing the
pH(1-p)NH, and that max(posterior

probability) = max( * Prior probability)
Assuming the prior probability is set to be proportional to
p(1-p)

— to prohibit assigning a very large or very small value to p

— then the posterior probability becomes pH+i(1-p)N-H+t

— optimizing the posterior w.r.t p will obtain p=(H+1)/(N+2).

It can also be proved that add-lambda smoothing can be
regarded as an MAP, given slightly different prior.

Shao-Chuan’s finding in fact tells us that this two basic
smoothing techniques is simply a special case for Bayesian
learning.



Unsupervised Learning Il



Clustering

Prof. Shou-de Lin
CSIE/GINM, NTU
Sdlin@csie.ntu.edu.tw
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Clustering is the partitioning of a data set into subsets
(clusters), so that the data in each subset (ideally)
share some common trait.

Difference between clustering and classification

— Clustering: divide input into partitions (without label). It’s
unsupervised.

— Classification: classify inputs into Y labeled classes
(supervised)

We will introduce two famous clustering algorithms
— K-means clustering
— EM clustering for Gaussian Mixture Model
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Randomly select k points as cluster center.

Assign the rest of the points to the cluster of
its closest center

Re-calculating the mean point of each
cluster.

Constructing a new partition by associating
each point with the cluster whose centroid is
the closest.

Go back to 3



K Means Example
(K=2)

It is A Greedy-based Pick seeds
Training!! Reassign clusters
Compute centroids
Reasssign clusters

° X Compute centroids

Reassign clusters

° Converged!

v
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e Failure Cases:
o
.....

e Viterbi (or greedy) Training got stuck to sub-
optimal easily

— If a node is equally close to several clusters, it can
cause problems since we can only assign it to one class.

e Can we do better? Yes, using EM-clustering



EM clustering (for Gaussian Mixtures)

Problem

Suppose you measure a single continuous variable

in a large sample of observations.

Suppose the sample consists of several clusters of
Gaussian observations with different means and

variances.

Our job is to determine the value of the 3k-1

parameters:
— The mean and variance for cluster 1
— The mean and variance for cluster 2

— The mean and variance for cluster k

— The sampling probability for cluster 1...k=>»m,
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e Single value Gaussian Distribution:

1  (x=u)?
R

.

'

e Multivariate Gaussian Distribution'

N(x|p,Z)= 1 1 sy
2" P”I (x 1) 27 (X ﬂ)f
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e A linear combination of

several Gaussian Distributions

e |t can model almost any
continuous density given
sufficient number of Gaussians.

prior likelihood

4
L
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e Suppose we have a dataset D of observations
{X4, X5, ..., X\}, and we wish to model this data
using a mixture of Gaussians.

 Then the log likelihood function is given by

In p(X| 7, 1, Z) = In{H (Z”kN(Xn |:ukizk))}

n=1 k=1

= Z In{z T N | 44 zk)}

n=1



MLE solution for u

K

N
In p(X|7z,,u,Z)=Z|n Z”k 0 | A 2y

n=1 k=1
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e Solve the above equation:

N N
Hy :—Z p(znk)xn’ and N :Z p(znk)

L( n ::::L N ::::L
The weighted mean of all the points in the dataset, in Can be interpreted as the
effective number of points15

whigchsthe;weight for data point x,, is given by the _
posterior probability that x belongs to a cluster c, assigned to cluster k



MLE solution for 2

e If we find the zero partial derivatives of 2, we
will learn the MLE solution for X is

B =2 P20~ )%~ 44

k n=1



MLE solution for

* Since there is a constraint that the sum of &, is 1, we
apply Lagrange multiplier to maximize

In p(X| 7, 4, Z)+/l(27zk —-1)

 The derivatives of the above (w rt m,) equal O gives

iKN(X LN o:zyzkiKN(x Ao2) 5 1-02=-N
N [, T) M AN )

=1 =1

N
> AN A2y 22 0= N, 47, (-N) =0 = 7, =

" Zﬂ'jN(Xn | 1,25)
=L

Ny
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e MLE solution for u, X, and  cannot be easily obtained (i.e.
no close-form solution) since p(z,,) contains p, 2, and &t

e Since p(x,,) can be generated by y, 2, and &r; and , X, and
n can be generated by p(x,,). We can treat p(x,,) as a
hidden variable and apply EM algorithm to iteratively learn

the parameters.

1 N
Hy :_Z P(Zy ) X
Nk n=1

1 N
2k = N_Z p(znk)(xn _luk)(xn _luk)T
k n=1

N, N
7Ty :W’ N, :Z P(Z)
n=1

0(z,) = KﬂkN(Xn | 1, 2)

zﬂjN(Xn |/uj’2j)
=1




>0idll 1Vl

Rﬂfnr

E PIII
LIVl 1V Ol

)

o~ wvhkirivvAae~ m Y

Jd LUresS lg

e Goal: Maximize the Likelihood function w.r.t. the
parameters u, 2, and m

e Steps
— Initialize the parameters pu, 2, and &, and evaluate the
initial value of the log likelihood Inp(X| u, %, m).

— E step: generate the posterior probabllltles using
current parameters p(z,)=— NG | 2402

Zﬂ N, | 4;,2))
— M-step. Re-estimate the parameters using the current
posterior probabilities (see previous page).

— Check the log likelihood given current parameters to
see if they converge. If not, return to E-step.
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EM Framework and EM Theory



Goal

 The goal of EM algorithm is to find maximum
likelihood solutions for models that contain latent
(or missing) variables. We represent the input
data as X, and the latent variables as Z. The
parameters of the model is represented as 0.

e {X,Z}is called the complete data and X is called
the incomplete data.

e Assuming the posterior distribution P(Z|X,0) can
be generated given X and 0 is known.

 The log likelihood function to maximize is
Inp(X|0). Since Z is unknown, we can represent

In p(X|0) as In> p(X,Z]6)

Problem: the summation over the latent variables appears inside the logarithm.
Therefore even P(X,Z|0) belongs to Gaussian, P(X|0) will still be hard to compute.
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Create an initial model, 6,

— The initialization can be arbitrarily, randomly, or with
a small set of training examples.

Use the existing model 6°'9 to obtain another

model 8" such that

In p(X |6™") > 1

Roano +hn nhANwva ctn
NTPC LiIC dauuVve St

maX|mum.

Challenge: How can we guaranteed to find a
better model after each iteration given the
hidden variable exists?

© >

Ans: 0™ =argmax ) p(Z|X,6°)Inp(X,Z|6)
0 Z
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e |f we can find a "% that guarantee
> p(ZX,60°)Inp(X,Z[6™)>> p(Z]|X,6°)Inp(X,Z|6™)
the?\ the same B"W will also sétisfy the condition
In p(X |6™") > In p(X |6°7)
e |f EM theorem is true, then we can try to find
6™" =argmax » p(Z|X,0%)Inp(X,Z|6)
0
Then such 8w ‘will lead to better P(X|©)

e How can we prove EM theorem?
— If we can prove the equation below, then we are done
In p(X |8™)=Inp(X |6°) >
D> p(ZX,60°)Inp(X,Z]0™)=> p(Z|X,6")Inp(X,Z|6")
Z Z



Proof of EM Theorem (1/2)

In p(X |6™)—Inp(X |6°) >
[Z p(Z | X,6%)In p(X,Z |6™) -3 p(Z | X,6°)In p(X,Z |6) ]

e Since P(X,Z|0) =P(X|0)* P(Z|X,0) =»
In P(X]|0)=In P(X,Z|0)- In P(Z|X,0)

e |n P(X]|O"eW)-|n P(X]0°9)={In P(X,Z|O"eW)- In P(Z|X,0"W)}-{In
P(X,Z]0°9)- In P(Z|X,0°'9)}

2. P(Z]X,6°)In p(X |6™") (X [0Z9T=Inp(X [6™)~Inp(X |6°") =

74 ~
[Zp(z | X,60%)In p(X,Z]6™)<In p(X,Z |9°'d)i—

z

> P X,0°In p(Z [X,0™)~In p(Z [ X,6°%)}

e |f we can prove <0
then we are done.

25
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Z X old p(Z|X Qnew)

;p( | X, 67" K{In (Z|X6’°'d)}<

* The proof used Jensen’s Inequality

_ P,(t|y;)
Z{P@(t | y;)log o (€ yi)} >

e More generally, if p and g are probability
distributions Z o(x Iog q(x ) >0 '

p(x) -

E{Y} -

Y[E{X}:]

E{X}

Py
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™" =argmax » p(Z|X,6°)Inp(X,Z|6)
0

— Initial step: randomly choose 6°9 =6,

— E-step: using an existing parameter 0°!9 to
estimate P(Z| X, 0°'d)

— M-step: find 0=0"®" that maximize

Q(0)= Z P(Z | X,6°)Inp(X,Z|8)

— Check the convergence of Q(0) or 0, if not satisfied,
then set 0°ld <0"e% and go back to E step.



EM: Why P(Z| X, 0°9) in the E step?

e Let’s go back to InP(X]|0)=InP(X,Z|0)- InP(Z|X,0)

2.a(@)Inp(X 6)=> a(z)In p(X,Z]6)- > a(z)In p(Z | X, )

p(X,Z|6)(
| - |
i p(X|0) §Z q(z)In 0(2)

Independent of
a(2)

Larger than O, equal ho
when q(z)=p(Z|X,0)

* When 0= 0°, setting q(z)=In p(Z| X, 6°'9) can
cause Ta@nPr]

gld)_ old
) =Inp(X|6™)

e Then we find 0= O"¢¥ that maximize
2InpEIX,0")Inp(X.210)  thijs OreW will also make' >0



e

A\

Global
optimal

\//\—)x |0)

> P(Z|X,8)Inp(X,Z|6)

D P(Z1X,6,)Inp(X,Z|6)
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Inp(X |8™")—Inp(X |68°) >

> p(Z X607 Inp(X,Z]6™)=> p(Z|X,60%)Inp(X,Z]|6%)
Z Z
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e Since the above is always true. In the M-step
we don’t really need to find a 6" that
optimizes Z p(Z | X,6")Inp(X,Z6)

better job than 6°din ZP(Z | X,0°)Inp(X,Z6)

then we are guarantee to reach a local optimal



ldeal vs. Available Data — Alighment
Problem for Machine Translation

e MT:

Noisy
P(E) E Channel
P(F|E)

* |deal: e; e, e, ..... (solvable by SL)
fEF,
* Available: e e, e, ..... (need EM)
f. f, f5 ...

2009/12/9
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Data: the house =2 la maison,

house = maison
Alignments are missing!!

Theory: English words are translated first,
then permuted.

Parameters: P(la|the), p(maison|the),
p(lalhouse), p(maison|house)



Model to learn:

Cv: ENMTrainine n AT Plalthe)=?
CX: CIVIITAINING ON VI pmaison|the)=?

P(la|house)="
P(maison|house)="?

e Possible assignments:

the house hUTSE tre h?use hDTSE
la maison maison la maison maison

(a) (b)

initialize uniformly:
C(la|the)=0*1/8+1*1/8=1/8

P(la|the)=1/2 E-step p(a)=1/8 M-step . C(maison|the)=1 *1/8+0*1/8=1/8
P(maison|the)=1/2 p(b)=1/8 (MLE) C(la|house)=1*1/8+0%1/8=1/8
P(lalhouse)=1/2 C(maison | house)=1*1/8+2*1/8=3/8
P(maison|house)=1/2 Elr?\:?ce)!r)ﬂiﬁi) 14 P(a)=7/256
P ~P(b)=147/256
/" p(lajhouse)=1/8 -
normafize normalize
p(maison|house)=7/8 _
Cllalthe)=9/32 E-ct p(la|the)=1/2
Cnaiconleh L33y Mstep P(a)=3/32 __ " p(maison|the)=1/2
cimaron| _2)232 P(b)=9/32 p(la| house)=1/4
(la| _ouse)— p(maison|house)=3/4
C(maison |house)=21/32
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Supervised learning

O
Q)

Complete data

Incomplete model argmax P(m|data)
(parameters unknown) m

incomplete data .
Data generation

argdmaxP(d | m)

complete model

incomplete data

incomplete model

argmaxP(incomplete data|m)

m

2009/12/9

complete model

complete data

complete data &
model
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e Pattern Recognition and Machine Learning
(Bishop Chapter 2, Chapter 9)

* "Bayesian Inference with Tears” Kevin Knight
(Sep 2009)



